logml.analysis.items.greedy_split
Functions
|
Kaplan Meier plot for two conditions. |
|
Kaplan Meier models for two conditions. |
|
Kaplan Meier plot for two conditions. |
|
Run search |
Classes
|
Finds 'best' gene set. |
|
Result object that is produced by Greedy Split analysis item. |
|
Strata-level result that is produced by Greedy Split analysis item. |
|
Wraps analysis algo into data loading/saving and config. |
- class logml.analysis.items.greedy_split.GreedySplitAnalysisConfig
Bases:
pydantic.main.BaseModel
Config definition for Greedy Split analysis item.
Show JSON schema
{ "title": "GreedySplitAnalysisConfig", "description": "Config definition for Greedy Split analysis item.", "type": "object", "properties": { "survival_column": { "title": "Survival Column", "type": "string" }, "event_column": { "title": "Event Column", "type": "string" }, "event_query": { "title": "Event Query", "type": "string" }, "stratify_column": { "title": "Stratify Column", "default": "", "type": "string" }, "features": { "title": "Features", "default": [], "type": "array", "items": {} }, "n_features_to_select": { "title": "N Features To Select", "default": 0, "type": "integer" }, "min_split_size": { "title": "Min Split Size", "default": 0, "type": "integer" }, "max_stratify_values": { "title": "Max Stratify Values", "default": 20, "type": "integer" }, "n_jobs": { "title": "N Jobs", "default": 1, "type": "integer" }, "input_ref": { "title": "Input Ref", "default": "$default", "type": "string" } }, "required": [ "survival_column", "event_column", "event_query" ] }
- Fields
- field survival_column: str [Required]
- field event_column: str [Required]
- field event_query: str [Required]
- field stratify_column: str = ''
- field features: list = []
- field n_features_to_select: int = 0
- field min_split_size: int = 0
- field max_stratify_values: int = 20
- field n_jobs: int = 1
- field input_ref: str = '$default'
- class logml.analysis.items.greedy_split.GreedySplitStrata(summary: pandas.core.frame.DataFrame, km_fitter1: object, km_fitter2: object, stat: float, pvalue: float, adjusted_pvalue: float, cox_ph: dict)
Bases:
object
Strata-level result that is produced by Greedy Split analysis item.
- summary: pandas.core.frame.DataFrame
- km_fitter1: object
- km_fitter2: object
- stat: float
- pvalue: float
- adjusted_pvalue: float
- cox_ph: dict
- get_summary(unused_short: bool = True)
Get analysis summary
- class logml.analysis.items.greedy_split.GreedySplitAnalysisResult(stratas: Optional[Dict[str, logml.analysis.items.greedy_split.GreedySplitStrata]] = None)
Bases:
logml.analysis.base_item.AnalysisResult
Result object that is produced by Greedy Split analysis item.
- stratas: Dict[str, logml.analysis.items.greedy_split.GreedySplitStrata] = None
- get_summary(short: bool = True)
Get summary object.
- Parameters
short – When true, return short (one-line) summary. Else return full summary.
- Returns
format-able summary result.
- Return type
object
- class logml.analysis.items.greedy_split.GreedySplitSurvivalAnalysis(cfg: logml.analysis.items.greedy_split.GreedySplitAnalysisConfig, logger=None, **kwargs)
Bases:
logml.analysis.base_item.AnalysisItem
Wraps analysis algo into data loading/saving and config.
- LABEL = 'greedy_split'
- PARAMS_CLS
alias of
logml.analysis.items.greedy_split.GreedySplitAnalysisConfig
- RESULT_CLS
alias of
logml.analysis.items.greedy_split.GreedySplitAnalysisResult
- classmethod estimate_resources(res: logml.analysis.common.JobResourcesReqs, cfg: GlobalConfig = None, df: Optional[pandas.core.frame.DataFrame] = None, strata_shapes: Optional[Dict[str, tuple]] = None, item_params: Any = None) None
See parent description.
Use minimal memory amount and set CPU number per strata/jobs combination.
- get_feature_columns(dataframe: pandas.core.frame.DataFrame) list
Return list of features.
- get_event_data(dataframe: pandas.core.frame.DataFrame) numpy.array
Exec query to form survival event data.
- run()
Run end-to-end analysis.
- get_result() logml.analysis.items.greedy_split.GreedySplitAnalysisResult
Return final analysis result.
- generate_analysis_metadata() Optional[logml.analysis.base_item.AnalysisMetadata]
Create metadata object
- class logml.analysis.items.greedy_split.FindGeneSet(x_data: pandas.core.frame.DataFrame, surv_target: numpy.array, censor: numpy.array, genes: Optional[list] = None, num_genes_to_select: int = 0, min_split_size: int = 0, use_any=False, interactive: bool = False, title: Optional[str] = None, logger=None, label=None, variance_threshold=0.0001)
Bases:
object
Finds ‘best’ gene set.
- property result
Returns greedy split analysis result.
- run()
Greedy search for gene set.