logml.data.datasets.cv_dataset
Classes
|
Modeling dataset. |
- class logml.data.datasets.cv_dataset.ModelingDataset(*dont_use_positional_args, dataset_metadata: Optional[logml.data.metadata.DatasetMetadata] = None, dataframe: Optional[pandas.core.frame.DataFrame] = None, objective_cfg: Optional[logml.configuration.modeling.ModelingTaskSpec] = None, cross_validator: Optional[Union[sklearn.model_selection._split.BaseCrossValidator, Iterable]] = None, features: Optional[List[str]] = None, logger=None, **kwargs)
Bases:
logml.data.datasets.base.BaseDataset
,logml.data.datasets.base.CrossValidationMixin
Modeling dataset. Combines data, metadata, modeling objective and CV.
- LABEL = 'cv_dataset'
- update_target_values()
Update list of unique target values. Applies for classification problems only. Invoke immediately after target columns manipulation, if there are any.
- property task
Makes _task property public.
- property target_column
Makes _target property public.
- property target_metric
Makes _target_metric property public.
- property target_labels
Makes _target_labels property public. NOTE: Applicable only for classification problems.
- property features
Returns list of feaures (aka modeling covariates or input variables).
- get_features_list() List[str]
Return a list of ‘feature’ columns. DEPRECATED, use features property.
- set_features_list(features: List[str]) None
Set list of ‘feature’ columns.
- get_feature_values(feature_name: str) numpy.array
Returns values of a given feature.
- get_features_matrix() numpy.ndarray
Returns X array, aka covariates matrix.
- get_target_values() numpy.ndarray
Returns modeling target (y column) for the current dataframe.
- property cv_dataframe: pandas.core.frame.DataFrame
Returns CV dataframe.
- property cv_features: numpy.array
Returns features from CV dataframe.
- property cv_targets: numpy.array
Returns targets from CV dataframe.
- get_target_columns() List
Returns list of target columns.
- drop(features: List[str], copy_object=False) logml.data.datasets.cv_dataset.ModelingDataset
Drop features
- select(features: List[str], copy_object=False) logml.data.datasets.cv_dataset.ModelingDataset
Limit feature set to the given one.
- clone(deep=False)
Clones current dataset.
- Parameters
deep – When True, new object is created using ‘copy.deepcopy’. Otherwise, a new dataset object is created using the same dataframe as current one.
Returns: