logml.models.registry.dummy
Classes
|
Base class for dummy models without inner CV. |
|
Wrapper for sklearn.dummy.DummyClassifier. |
|
Wrapper for sklearn.dummy.DummyRegressor. |
|
Analog of DummyRegressor model for survival problems. |
|
Dummy survival model. |
- class logml.models.registry.dummy.BaseDummyModel(params: Optional[dict] = None, logger=None)
Bases:
logml.models.base.BaseModel
Base class for dummy models without inner CV. TAGS are set.
- TAGS = ['dummy']
- FE_MODEL_ATTRIBUTE = None
- class logml.models.registry.dummy.DummyRegressorModel(params: Optional[dict] = None, logger=None)
Bases:
logml.models.registry.dummy.BaseDummyModel
Wrapper for sklearn.dummy.DummyRegressor.
- TASK = 'regression'
- F_MODEL
alias of
sklearn.dummy.DummyRegressor
- DEFAULT_PARAMS = {'strategy': 'mean'}
- PARAMS_SPACE = {'quantile': [0.6], 'strategy': ['mean', 'median', 'quantile']}
- class logml.models.registry.dummy.DummyClassifierModel(params: Optional[dict] = None, logger=None)
Bases:
logml.models.registry.dummy.BaseDummyModel
Wrapper for sklearn.dummy.DummyClassifier.
- TASK = 'classification'
- F_MODEL
alias of
sklearn.dummy.DummyClassifier
- DEFAULT_PARAMS = {'random_state': 42, 'strategy': 'stratified'}
- PARAMS_SPACE = {'strategy': ['stratified', 'most_frequent', 'prior', 'uniform']}
- class logml.models.registry.dummy.DummySurvivalEstimator(*, strategy='median', **kwargs)
Bases:
sklearn.dummy.DummyRegressor
,sksurv.base.SurvivalAnalysisMixin
Analog of DummyRegressor model for survival problems.
- fit(X, y, **kwargs)
Fit estimator.
- predict(X, **kwargs)
Predict.