logml.models.registry.svm
Classes
|
Base class for sklearn.svm* models. |
|
Wrapper for sklearn.svm.LinearSVC. |
|
Wrapper for sklearn.svm.SVC. |
|
Wrapper for sklearn.svm.SVR. |
- class logml.models.registry.svm.BaseSVMModel(params: Optional[dict] = None, logger=None)
Bases:
logml.models.base.BaseModel
Base class for sklearn.svm* models.
- TAGS = ['svm', 'no_predict_proba']
- FE_MODEL_ATTRIBUTE = None
- class logml.models.registry.svm.LinearSVCClassifierModel(params: Optional[dict] = None, logger=None)
Bases:
logml.models.registry.svm.BaseSVMModel
Wrapper for sklearn.svm.LinearSVC.
- TASK = 'classification'
- FE_MODEL_ATTRIBUTE = 'coef_'
- F_MODEL
alias of
sklearn.svm._classes.LinearSVC
- DEFAULT_PARAMS = {'random_state': None}
- PARAMS_SPACE = {'C': [0.01, 0.1, 1], 'dual': [True, False], 'fit_intercept': [True, False], 'penalty': ['l1', 'l2']}
- class logml.models.registry.svm.SVCClassifierModel(params: Optional[dict] = None, logger=None)
Bases:
logml.models.registry.svm.BaseSVMModel
Wrapper for sklearn.svm.SVC.
- TASK = 'classification'
- F_MODEL
alias of
sklearn.svm._classes.SVC
- DEFAULT_PARAMS = {'probability': True, 'random_state': None}
- PARAMS_SPACE = {'C': {'distribution': 'loguniform', 'params': [-5, 15]}, 'cache_size': [200], 'degree': [2, 3, 4], 'gamma': {'distribution': 'loguniform', 'params': [-15, 3]}, 'kernel': ['poly', 'rbf', 'sigmoid'], 'probability': [True], 'random_state': [None], 'tol': [0.001]}
- class logml.models.registry.svm.SVRClassifierModel(params: Optional[dict] = None, logger=None)
Bases:
logml.models.registry.svm.BaseSVMModel
Wrapper for sklearn.svm.SVR.
- TASK = 'regression'
- F_MODEL
alias of
sklearn.svm._classes.SVR
- DEFAULT_PARAMS = {'degree': 2}
- PARAMS_SPACE = {'C': {'distribution': 'loguniform', 'params': [-12, 2]}, 'degree': [1, 2, 3, 4], 'epsilon': {'distribution': 'loguniform', 'params': [-12, 2]}, 'kernel': ['linear', 'poly', 'rbf', 'sigmoid']}