logml.report.controllers.feature_importance
Functions
|
Calculate symmetrical matrix [n_strata, n_strata] with values equal to kendal tau rank metrics, e.g. |
Classes
|
Implements data handling and plotting API for cross-strata FI comparison. |
|
Implements data handling and plotting API for FeatureImportance results. |
|
Implements data handling and plotting API for FeatureImportance results. |
- class logml.report.controllers.feature_importance.FeatureImportanceController(cfg: GlobalConfig, global_params: dict, setup_id: str = '', logger=None)
Bases:
object
Implements data handling and plotting API for FeatureImportance results.
- static read_feature_importance_artifact(filepath: pathlib.Path)
Simple reader for FI summaries in csv format.
- property dataframe: pandas.core.frame.DataFrame
Returns preprocessed dataframe.
- show_problem_statement()
Displays a static table with details of problem statement, task, metrics, etc.
- load_raw_summary() pandas.core.frame.DataFrame
Returns FI summary (raw): all methods used concatenated.
- load_ranked_summary() pandas.core.frame.DataFrame
Returns FI summary: all methods used concatenated.
- show_fi_methods_overview()
Displays a list of FI methods used.
- show_global_fi_overview()
Displays the averaged featured ranking.
- show_complete_fi_summary()
Shows a heatmap for all methods and features.
- select_top_features() List[str]
Returns a list of features that appeared at the topK at least once.
- select_vardict_mut_features() List[str]
Returns a list of Vardict features with Mutations.
- check_top_features() bool
Checks whether it makes sense to create a separate plot for the top features.
- check_vardict_mut_features() bool
Checks whether it makes sense to create a separate plot for Vardict Mut features.
- show_fi_for_top_features()
Shows the result importances only for the TopK features.
- show_fi_for_vardict_mut_features()
Shows the result importances only for the Vardict Mut features.
- get_bootstrapped_models() List[str]
Returns a list of models for which bootstrapping results are available.
- show_bootstrapping_result(model_alias: str)
Produces visualizations for a given model.
- show_association_with_target()
Shows additional plots for associating features with target.
- class logml.report.controllers.feature_importance.FIDSController(cfg: GlobalConfig, global_params: dict, setup_id: str = '', logger=None)
Bases:
object
Implements data handling and plotting API for FeatureImportance results.
- plot_summary_table()
- static read_feature_importance_artifact(filepath: pathlib.Path)
Simple reader for FI summaries in csv format.
- property dataframe: pandas.core.frame.DataFrame
Returns preprocessed dataframe.
- show_problem_statement()
Displays a static table with details of problem statement, task, metrics, etc.
- class logml.report.controllers.feature_importance.CrossStrataFIController(cfg: GlobalConfig, global_params: dict)
Bases:
object
Implements data handling and plotting API for cross-strata FI comparison.
- get_strata_cross_product() List[Tuple[str, str]]
Returns a list of (strata_id_i, strata_id_j) combinations.
- show_strata_overview()
Displays a list of available stratas.
- show_all_strata_comparison_heatmap(horizontal_heatmap=True)
Shows a summary with averaged FI ranks across stratas.
- show_two_strata_comparison_scatter()
Displays a scatter with averaged FI rankings for all pairs of strata.
- plot_all_ranks_similarity(top_features=None, labels=None, plots_per_row=3, row_height: int = 6, col_width: int = 6)
Plot rank similarity matrices for set of features.
- plot_all_ranks_clustermap(n_top_features=50)
Plot clustermap for 1-based ranks for all strata
- logml.report.controllers.feature_importance.generate_similarity_table(rank_df, n_top_features=- 1, method='weighted')
Calculate symmetrical matrix [n_strata, n_strata] with values equal to kendal tau rank metrics, e.g. how similar are ranks for two given strata