logml.survival_analysis.optcutoff
Survival Optimal Cutoff module - Searches for a feature’s split which maximizes survival.
This is work in progress, and is intended to replace everything in survival_analysis folder.
Functions
|
Binarizes values based on a threshold |
|
Find optimal cutoff |
|
Calls get_column_opt_cutoff for each of the columns provided. |
|
Returns list of percentile values that split groups range into valid parts. |
Classes
|
|
|
Survival Optimal cutoff - searches for a feature's split which maximizes survival. |
- class logml.survival_analysis.optcutoff.ProgressParallel(use_tqdm=True, total=None, *args, **kwargs)
Bases:
joblib.parallel.Parallel
- print_progress()
Display the process of the parallel execution only a fraction of time, controlled by self.verbose.
- logml.survival_analysis.optcutoff.get_valid_cutoffs(values: numpy.ndarray, n_percentiles: int = 50, min_population: float = 0.0) numpy.ndarray
Returns list of percentile values that split groups range into valid parts.
- logml.survival_analysis.optcutoff.binarize(values: numpy.ndarray, threshold: float)
Binarizes values based on a threshold
- logml.survival_analysis.optcutoff.get_column_opt_cutoff(df: pandas.core.frame.DataFrame, column: str, event_column: str, time_column: str, min_population: float = 0.2, n_percentiles: int = 50, cox_cols_mapping: Optional[dict] = None, errors: str = 'report') dict
Find optimal cutoff
- logml.survival_analysis.optcutoff.get_columns_opt_cutoff(df: pandas.core.frame.DataFrame, columns: List[str], event_column: str, time_column: str, min_population: float = 0.2, n_percentiles: int = 50, cox_cols_mapping: Optional[dict] = None, errors: str = 'report') List
Calls get_column_opt_cutoff for each of the columns provided.
- class logml.survival_analysis.optcutoff.SAOptimalCutoff(params: logml.survival_analysis.extractors.optimal_cut_off.OptimalCutOffSAParams, time_column: str, event_column: str, logger=None, group_labels: Optional[dict] = None, n_jobs: int = 1)
Bases:
object
Survival Optimal cutoff - searches for a feature’s split which maximizes survival.
- fit(df: pandas.core.frame.DataFrame)
Find optimal split per feature.
- Parameters
df – dataframe with numerical columns