logml.data.transformers.normalization

Classes

BaseNormalizationTransformer(**kwargs)

Provides normalization functionality.

Log1pStandardNormalizationTransformer(**kwargs)

Log1p transformation + standard normalization.

LogStandardNormalizationTransformer(**kwargs)

Log transformation + standard normalization.

MaxAbsNormalizationTransformer(**kwargs)

MaxAbs normalization.

MinMaxNegNormalizationTransformer(**kwargs)

MinMax normalization (result range is [-1; -1]).

MinMaxNormalizationTransformer(**kwargs)

MinMax normalization.

StandardNormalizationTransformer(**kwargs)

Standard normalization.

class logml.data.transformers.normalization.BaseNormalizationTransformer(**kwargs)

Bases: logml.data.base.BaseTransformer

Provides normalization functionality.

LABEL = None
NORMALIZER = None
CONFIG_CLASS

alias of logml.data.config.BaseTransformerParams

fit(dataframe: pandas.core.frame.DataFrame, dataset_metadata: Optional[logml.data.metadata.DatasetMetadata] = None, **kwargs)

Fits required scallers.

transform(dataframe: pandas.core.frame.DataFrame) pandas.core.frame.DataFrame

Applies required scalers.

update_transform_log(change: logml.data.utils.DataTransformLogItem)

Add custom data to the log.

params: BaseTransformerParams
global_params: Dict
metadata_cfg: ModelingTaskSpec
affected_columns_: List[str]
class logml.data.transformers.normalization.StandardNormalizationTransformer(**kwargs)

Bases: logml.data.transformers.normalization.BaseNormalizationTransformer

Standard normalization.

LABEL = 'standard'
params: BaseTransformerParams
global_params: Dict
metadata_cfg: ModelingTaskSpec
affected_columns_: List[str]
class logml.data.transformers.normalization.MaxAbsNormalizationTransformer(**kwargs)

Bases: logml.data.transformers.normalization.BaseNormalizationTransformer

MaxAbs normalization.

LABEL = 'maxabs'
params: BaseTransformerParams
global_params: Dict
metadata_cfg: ModelingTaskSpec
affected_columns_: List[str]
class logml.data.transformers.normalization.MinMaxNormalizationTransformer(**kwargs)

Bases: logml.data.transformers.normalization.BaseNormalizationTransformer

MinMax normalization.

LABEL = 'minmax'
params: BaseTransformerParams
global_params: Dict
metadata_cfg: ModelingTaskSpec
affected_columns_: List[str]
class logml.data.transformers.normalization.MinMaxNegNormalizationTransformer(**kwargs)

Bases: logml.data.transformers.normalization.BaseNormalizationTransformer

MinMax normalization (result range is [-1; -1]).

LABEL = 'minmax_neg'
params: BaseTransformerParams
global_params: Dict
metadata_cfg: ModelingTaskSpec
affected_columns_: List[str]
class logml.data.transformers.normalization.LogStandardNormalizationTransformer(**kwargs)

Bases: logml.data.transformers.normalization.BaseNormalizationTransformer

Log transformation + standard normalization.

LABEL = 'log_standard'
params: BaseTransformerParams
global_params: Dict
metadata_cfg: ModelingTaskSpec
affected_columns_: List[str]
class logml.data.transformers.normalization.Log1pStandardNormalizationTransformer(**kwargs)

Bases: logml.data.transformers.normalization.BaseNormalizationTransformer

Log1p transformation + standard normalization.

LABEL = 'log1p_standard'
params: BaseTransformerParams
global_params: Dict
metadata_cfg: ModelingTaskSpec
affected_columns_: List[str]