logml.data.transformers.randomization

Classes

AddRandomColumnsTransformer(params[, ...])

For a given set of target columns, creates additional 'randomized' columns for later significance assessment.

ShuffleTransformer(params[, metadata_cfg, ...])

Randomly permutes a given dataset's rows.

class logml.data.transformers.randomization.ShuffleTransformer(params: logml.data.config.BaseTransformerParams, metadata_cfg: logml.configuration.modeling.ModelingTaskSpec = None, cfg: GlobalConfig = None, global_params: Dict = None, logger=None)

Bases: logml.data.base.BaseTransformer

Randomly permutes a given dataset’s rows.

LABEL = 'shuffle'
CONFIG_CLASS = None
fit(dataframe: pandas.core.frame.DataFrame, dataset_metadata: Optional[logml.data.metadata.DatasetMetadata] = None, **kwargs)

Operates on rows, so no need to filter columns.

transform(dataframe: pandas.core.frame.DataFrame) pandas.core.frame.DataFrame

Applies transformations and returns the result dataframe.

params: BaseTransformerParams
global_params: Dict
metadata_cfg: ModelingTaskSpec
affected_columns_: List[str]
class logml.data.transformers.randomization.AddRandomColumnsTransformer(params: logml.data.config.BaseTransformerParams, metadata_cfg: logml.configuration.modeling.ModelingTaskSpec = None, cfg: GlobalConfig = None, global_params: Dict = None, logger=None)

Bases: logml.data.base.BaseTransformer

For a given set of target columns, creates additional ‘randomized’ columns for later significance assessment.

LABEL = 'add_random_columns'
CONFIG_CLASS

alias of logml.data.config.AddRandomColumnsTransformerParams

transform(dataframe: pandas.core.frame.DataFrame) pandas.core.frame.DataFrame

Adds randomized columns.

update_metadata(dataset_metadata: Optional[logml.data.metadata.DatasetMetadata] = None, dataframe: Optional[pandas.core.frame.DataFrame] = None) None

Add metadata for generated columns.

params: BaseTransformerParams
global_params: Dict
metadata_cfg: ModelingTaskSpec
affected_columns_: List[str]