logml.feature_importance.extractors.permutation
Functions
|
Scoring function for PermutationImportance. |
Classes
|
Utilize eli5.sklearn.PermutationImportance to calculate feature importance. |
- class logml.feature_importance.extractors.permutation.PermutationFIExtractorParams
Bases:
pydantic.main.BaseModel
Defines hyperparams for Permutation FI method.
Show JSON schema
{ "title": "PermutationFIExtractorParams", "description": "Defines hyperparams for Permutation FI method.", "type": "object", "properties": { "n_iter": { "title": "N Iter", "default": 10, "type": "integer" }, "random_state": { "title": "Random State", "type": "integer" }, "refit": { "title": "Refit", "default": false, "type": "boolean" } } }
- field n_iter: int = 10
- field random_state: int = None
- field refit: bool = False
- class logml.feature_importance.extractors.permutation.PermutationImportanceEli5Extractor(config: Optional[logml.feature_importance.extractors.permutation.PermutationFIExtractorParams] = None, show_progress=True, **kwargs)
Bases:
logml.feature_importance.base.BaseImportanceExtractor
Utilize eli5.sklearn.PermutationImportance to calculate feature importance. See https://eli5.readthedocs.io
Note on target_metric value: should be a loss function with ability to minimize.
- LABEL = 'permutation'
- CONFIG_CLASS
alias of
logml.feature_importance.extractors.permutation.PermutationFIExtractorParams
- extract_model_feature_importance(model_name: Optional[str] = None, model_cls: Optional[Type[logml.models.base.BaseModel]] = None, params: Optional[dict] = None, dataset: Optional[logml.data.datasets.cv_dataset.ModelingDataset] = None, model=None)
Feature importance extraction for single model.
- raw_fis: Dict[str, List]