logml.metrics.registry.classification
Classes
- class logml.metrics.registry.classification.BaseClassificationMetric(**kwargs)
Bases:
logml.metrics.base.BaseMetric
Base class for classification metrics (from 0 to 1).
- TASK: logml.common.ModelingTask = 'classification'
- get_value(y_true: Optional[numpy.ndarray] = None, y_pred: Optional[numpy.ndarray] = None, y_pred_proba: Optional[numpy.ndarray] = None, class_labels: Optional[list] = None, **kwargs)
See parent
- class logml.metrics.registry.classification.Accuracy(**kwargs)
Bases:
logml.metrics.registry.classification.BaseClassificationMetric
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
- LABEL: str = 'accuracy'
- get_value(y_true: Optional[numpy.ndarray] = None, y_pred: Optional[numpy.ndarray] = None, y_pred_proba: Optional[numpy.ndarray] = None, class_labels: Optional[list] = None, **kwargs)
Get metric value
- class logml.metrics.registry.classification.F1Score(**kwargs)
Bases:
logml.metrics.registry.classification.BaseClassificationMetric
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
- LABEL: str = 'f1'
- get_value(y_true: Optional[numpy.ndarray] = None, y_pred: Optional[numpy.ndarray] = None, y_pred_proba: Optional[numpy.ndarray] = None, class_labels: Optional[list] = None, **kwargs)
Get metric value
- class logml.metrics.registry.classification.Jaccard(**kwargs)
Bases:
logml.metrics.registry.classification.BaseClassificationMetric
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_score.html
- LABEL: str = 'jaccard'
- get_value(y_true: Optional[numpy.ndarray] = None, y_pred: Optional[numpy.ndarray] = None, y_pred_proba: Optional[numpy.ndarray] = None, class_labels: Optional[list] = None, **kwargs)
Get metric value
- class logml.metrics.registry.classification.LogLoss(**kwargs)
Bases:
logml.metrics.base.BaseMetric
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html
- TASK: logml.common.ModelingTask = 'classification'
- LABEL: str = 'logloss'
- get_value(y_true: Optional[numpy.ndarray] = None, y_pred: Optional[numpy.ndarray] = None, y_pred_proba: Optional[numpy.ndarray] = None, class_labels: Optional[list] = None, **kwargs)
Get metric value
- class logml.metrics.registry.classification.Precision(**kwargs)
Bases:
logml.metrics.registry.classification.BaseClassificationMetric
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
- LABEL: str = 'precision'
- get_value(y_true: Optional[numpy.ndarray] = None, y_pred: Optional[numpy.ndarray] = None, y_pred_proba: Optional[numpy.ndarray] = None, class_labels: Optional[list] = None, **kwargs)
Get metric value
- class logml.metrics.registry.classification.Recall(**kwargs)
Bases:
logml.metrics.registry.classification.BaseClassificationMetric
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
- LABEL: str = 'recall'
- get_value(y_true: Optional[numpy.ndarray] = None, y_pred: Optional[numpy.ndarray] = None, y_pred_proba: Optional[numpy.ndarray] = None, class_labels: Optional[list] = None, **kwargs)
Get metric value
- class logml.metrics.registry.classification.RocAUC(**kwargs)
Bases:
logml.metrics.registry.classification.BaseClassificationMetric
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
- LABEL: str = 'rocauc'
- is_applicable(objective: logml.common.ModelingTask, y_true: Optional[numpy.ndarray] = None, y_pred: Optional[numpy.ndarray] = None, y_pred_proba: Optional[numpy.ndarray] = None, return_loss: Optional[bool] = None, return_score: Optional[bool] = None, **kwargs) bool
Checks if the metric is applible for the modeling problem at hand.
- get_value(y_true: Optional[numpy.ndarray] = None, y_pred: Optional[numpy.ndarray] = None, y_pred_proba: Optional[numpy.ndarray] = None, class_labels: Optional[list] = None, **kwargs)
Get metric value
- class logml.metrics.registry.classification.RocCurve(**kwargs)
Bases:
logml.metrics.registry.classification.BaseClassificationMetric
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html
- LABEL: str = 'roc-curve'
- REQUIRED: bool = False
- get_value(y_true: Optional[numpy.ndarray] = None, y_pred: Optional[numpy.ndarray] = None, y_pred_proba: Optional[numpy.ndarray] = None, class_labels: Optional[list] = None, **kwargs)
See parent
- get_loss(**kwargs)
Loss is not supported.
- get_score(**kwargs)
Loss is not supported.
- class logml.metrics.registry.classification.PRCurve(**kwargs)
Bases:
logml.metrics.registry.classification.RocCurve
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_curve.html
- LABEL: str = 'pr-curve'