logml.metrics.registry.regression
Classes
|
Base class for regression metrics. |
|
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html |
|
|
|
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_log_error.html |
|
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html |
|
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html |
- class logml.metrics.registry.regression.BaseRegressionMetric(**kwargs)
Bases:
logml.metrics.base.BaseMetric
Base class for regression metrics.
- TASK: logml.common.ModelingTask = 'regression'
- get_value(y_true: Optional[numpy.ndarray] = None, y_pred: Optional[numpy.ndarray] = None, y_pred_proba: Optional[numpy.ndarray] = None, class_labels: Optional[list] = None, **kwargs)
See paret description.
- class logml.metrics.registry.regression.MAE(**kwargs)
Bases:
logml.metrics.registry.regression.BaseRegressionMetric
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html
- LABEL: str = 'mae'
- get_value(y_true: Optional[numpy.ndarray] = None, y_pred: Optional[numpy.ndarray] = None, y_pred_proba: Optional[numpy.ndarray] = None, class_labels: Optional[list] = None, **kwargs)
See paret description.
- class logml.metrics.registry.regression.RMSE(**kwargs)
Bases:
logml.metrics.registry.regression.BaseRegressionMetric
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html
- LABEL: str = 'rmse'
- get_value(y_true: Optional[numpy.ndarray] = None, y_pred: Optional[numpy.ndarray] = None, y_pred_proba: Optional[numpy.ndarray] = None, class_labels: Optional[list] = None, **kwargs)
See paret description.
- class logml.metrics.registry.regression.MSLE(**kwargs)
Bases:
logml.metrics.registry.regression.BaseRegressionMetric
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_log_error.html
- LABEL: str = 'msle'
- is_applicable(objective: logml.common.ModelingTask, y_true: Optional[numpy.ndarray] = None, y_pred: Optional[numpy.ndarray] = None, y_pred_proba: Optional[numpy.ndarray] = None, return_loss: Optional[bool] = None, return_score: Optional[bool] = None, **kwargs) bool
Checks if the metric is applible for the modeling problem at hand.
- get_value(y_true: Optional[numpy.ndarray] = None, y_pred: Optional[numpy.ndarray] = None, y_pred_proba: Optional[numpy.ndarray] = None, class_labels: Optional[list] = None, **kwargs)
See paret description.
- class logml.metrics.registry.regression.MAPE(**kwargs)
Bases:
logml.metrics.registry.regression.BaseRegressionMetric
- LABEL: str = 'mape'
- get_value(y_true: Optional[numpy.ndarray] = None, y_pred: Optional[numpy.ndarray] = None, y_pred_proba: Optional[numpy.ndarray] = None, class_labels: Optional[list] = None, **kwargs)
See paret description.
- class logml.metrics.registry.regression.R2Score(**kwargs)
Bases:
logml.metrics.registry.regression.BaseRegressionMetric
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html
- LABEL: str = 'r2'
- get_value(y_true: Optional[numpy.ndarray] = None, y_pred: Optional[numpy.ndarray] = None, y_pred_proba: Optional[numpy.ndarray] = None, class_labels: Optional[list] = None, **kwargs)
See paret description.