logml.model_search.common
Classes
|
Result of model training and evaluation |
|
Status of HPO for the model during model seection. |
|
Model selection result |
- class logml.model_search.common.ModelHpoStatus(value)
Bases:
str
,enum.Enum
Status of HPO for the model during model seection.
- FAILED = 'failed'
- SKIPPED = 'skipped'
- ALL_TRIALS_FAILED = 'all_trials_failed'
- SUCCESS = 'success'
- class logml.model_search.common.ModelEvaluationData(name: str, params: dict, loss_name: str, fit_success: bool = False, mean_loss: Optional[float] = 10000000000.0, loss_rel: Optional[float] = - 1, raw_metrics: Optional[list] = None, mean_metrics: Optional[dict] = None, std_metrics: Optional[dict] = None, hpo_status: logml.model_search.common.ModelHpoStatus = ModelHpoStatus.SKIPPED, error: Optional[str] = None, selection_test: Optional[str] = None, pvalue: Optional[float] = 1.0, raw_loss: Optional[list] = None, raw_metrics_erros: Optional[dict] = None, raw_metrics_not_applicable: Optional[dict] = None)
Bases:
object
Result of model training and evaluation
- name: str
- params: dict
- loss_name: str
- fit_success: bool = False
- mean_loss: Optional[float] = 10000000000.0
- loss_rel: Optional[float] = -1
- raw_metrics: Optional[list] = None
- mean_metrics: Optional[dict] = None
- std_metrics: Optional[dict] = None
- hpo_status: logml.model_search.common.ModelHpoStatus = 'skipped'
- error: str = None
- selection_test: Optional[str] = None
- pvalue: Optional[float] = 1.0
- raw_loss: Optional[list] = None
- raw_metrics_erros: Optional[dict] = None
- raw_metrics_not_applicable: Optional[dict] = None
- class logml.model_search.common.ModelSelectionResult(dataset_hash: str, baseline_model: logml.model_search.common.ModelEvaluationData, dataset_filename: typing.Optional[str] = None, selected_models: typing.Optional[typing.List[logml.model_search.common.ModelEvaluationData]] = <factory>, not_selected_models: typing.Optional[typing.List[logml.model_search.common.ModelEvaluationData]] = <factory>)
Bases:
object
Model selection result
- dataset_hash: str
- baseline_model: logml.model_search.common.ModelEvaluationData
- dataset_filename: Optional[str] = None
- selected_models: Optional[List[logml.model_search.common.ModelEvaluationData]]
- not_selected_models: Optional[List[logml.model_search.common.ModelEvaluationData]]
- static from_dict(data: dict)
Create instance of the class from dictionary (loaded from json).