logml.model_search.provider
Models provider interface
Classes
|
Class to save or acquire model instances whenever they are required, like feature importance module. |
- class logml.model_search.provider.ModelProvider(output_structure: Optional[logml.model_search.ModelSearchOutputStructure] = None, config: Optional[logml.configuration.modeling.ModelSearchSection] = None, logger=None, auto_load=True, random_state=None)
Bases:
object
Class to save or acquire model instances whenever they are required, like feature importance module.
If dumped models data is not available, default models are created.
- dump_selection_result(result: Optional[logml.model_search.common.ModelSelectionResult] = None)
Dump selection result.
- dump_model_hpo_result(hpo_result: Optional[logml.model_search.hp_optimizer.HpoResult] = None, ds_name: Optional[str] = None)
Dump model HPO result and trials.
- dump_model_result(model_result: Optional[logml.model_search.common.ModelEvaluationData] = None, ds_name: Optional[str] = None, model: Optional[logml.models.base.BaseModel] = None)
Dump model training and evaluation result.
- load_model_evaluation_result(model_name: str, ds_name: str) Optional[logml.model_search.common.ModelEvaluationData]
Load a given model’s training and evaluation result for a given dataset.
- load_model_instance(model_name: Optional[str] = None, ds_name: Optional[str] = None) Optional[logml.models.base.BaseModel]
Load pickled model instance
- load_model_hpo_result(model_id: Optional[str] = None, ds_name: Optional[str] = None) Optional[logml.model_search.hp_optimizer.ModelHpoResult]
Load model HPO result and trials.
- load_hpo_result() Optional[List[logml.model_search.hp_optimizer.ModelHpoResult]]
Load all models HPO result
- load_selection_result()
Load previously dumped summary
- get_model_class(model_label: Optional[str] = None) Type[logml.models.base.BaseModel]
Returns class for new models creation by caller.
- get_configured_models() Optional[list]
Returns configured models, disregarding selected ones.
- create_model_instance(model_name)
- get_model_data(model_name: str, check_nonselected=False)
Gets model params, checking from concrete instance to most general configs up.
- get_selected_models() Optional[list]
Returns models parameters picked by models selection process.
- sort_selection_result()
Orders existing models by pvalue and loss.