logml.report.controllers.baseline_modeling
Functions
|
For a given list of per-fold curves returns averaged curve. |
|
Returns baseline ROC/PR curves. |
|
Extracts required metrics corresponding to X- and Y- axes. |
Classes
|
Implements data handling and plotting API for ModelSearch results. |
- class logml.report.controllers.baseline_modeling.ModelSelectionController(cfg: GlobalConfig, global_params: dict, setup_id: str = '')
Bases:
object
Implements data handling and plotting API for ModelSearch results.
- list_available_models()
Get names of all available models.
- get_dataset_name() str
Returns a dataset that was used to produce HPO results.
- get_hpo_losses() Tuple[Dict[str, List], list]
Collects trial losses from available models.
- plot_hpo_losses()
For each model plots HPO trace - (loss, iteration) in form of scatter.
- get_dataset() ModelingDataset
Returns a dataset that was used for MS.
- evaluate_tuned_models(metric=None) Dict[str, logml.models.base.CVMetricsResult]
Returns metrics from all folds (validation) for all tuned model. In case only a specific metric is required - the param ‘metric’ is used.
- get_models_performance_summary() pandas.core.frame.DataFrame
Summarizes models performance across CV folds.
- display_modeling_info()
Render modeling info.
- show_performance_metrics()
Displays a table that summarizes models performance across folds.
- show_classification_curves(curve_type: str)
Plots averaged ROC/PR curves per model.
- get_metrics_per_problem(curve_cfg, model_metrics)
- show_classification_predictions()
Plots confusion matrix averaged across CV folds for each model.
- show_regression_predictions()
Plots true vs predicted for all CV folds for each model.
- show_prediction_details()
Produces task-specific plots: confusion matrix for classification and pred/true scatterplot for regression.
- plot_metrics_distributions() None
Prot vioilin plot for loss distribution for baseline and all trained models.
- get_metrics_distribution(metric_name=None)
Returns dataframe with raw metrics, nullified outside percentiles.