logml.report.plotters.baseline_modeling
Functions
|
Widget for plotting annotated heatmaps (like confusion matrices). |
|
Widget for plotting scatter plots on one figure. |
|
Plots a given classification curves for a gien model. |
|
Plots a given confusion matrix for a given model as annotated heatmap. |
|
For each model plots HPO trace - (loss, iteration) in form of scatter. |
|
Plots true vs predicted for all CV folds for a given model model. |
Plots true vs predicted for all CV folds for a given model model. |
- logml.report.plotters.baseline_modeling.build_scatter_plot(data: List[Dict], **kwargs)
Widget for plotting scatter plots on one figure.
- logml.report.plotters.baseline_modeling.build_annotated_heapmap(data: Dict, **kwargs)
Widget for plotting annotated heatmaps (like confusion matrices).
- logml.report.plotters.baseline_modeling.plot_hpo_losses(hpo_losses: Dict[str, List[float]])
For each model plots HPO trace - (loss, iteration) in form of scatter.
- logml.report.plotters.baseline_modeling.plot_classification_curves(data: List[Dict], curve_cfg: Dict, model: str)
Plots a given classification curves for a gien model.
- logml.report.plotters.baseline_modeling.plot_confusion_matrix(data: numpy.array, labels: List, model: str)
Plots a given confusion matrix for a given model as annotated heatmap.
- logml.report.plotters.baseline_modeling.plot_regression_predictions_folded(predictions_per_fold: List, dataset: ModelingDataset, model: str)
Plots true vs predicted for all CV folds for a given model model.
- logml.report.plotters.baseline_modeling.plot_regression_predictions(predictions: numpy.ndarray, dataset: ModelingDataset, model: str)
Plots true vs predicted for all CV folds for a given model model.