logml.survival_analysis.artifacts.kaplan_meier
Functions
|
Returns KaplanMeier model for each group within a given column. |
|
Runs logrank test against a given column's values. |
Classes
|
Object for conducting univariate analysis: KM plot and logRank test. |
- class logml.survival_analysis.artifacts.kaplan_meier.KaplanMeierArtifact(*args)
Bases:
logml.survival_analysis.artifacts.base.BaseArtifact
Object for conducting univariate analysis: KM plot and logRank test.
- LABEL = 'kaplan_meier'
- property raw_logrank_p_value: float
Returns raw LogRank test p-value.
- property logrank_p_value: float
Returns corrected p-value (if available), or raw logrank test one.
- build(container: logml.data.datasets.survival_dataset.UnivariateSurvivalContainer)
Initializes artifact using a given survival container (univariate).
- Contains of the following parts:
KM models are fitted (per group)
LogRanks test
- plot() matplotlib.figure.Figure
Artifact visualization: survival functions and LogRank test p-value.
- column_name: str
- threshold: float
- logml.survival_analysis.artifacts.kaplan_meier.get_logrank_test_summary(container: logml.data.datasets.survival_dataset.UnivariateSurvivalContainer) lifelines.statistics.StatisticalResult
Runs logrank test against a given column’s values.
- logml.survival_analysis.artifacts.kaplan_meier.get_kaplan_meier_fitters(container: logml.data.datasets.survival_dataset.UnivariateSurvivalContainer) Dict[str, lifelines.fitters.kaplan_meier_fitter.KaplanMeierFitter]
Returns KaplanMeier model for each group within a given column.