Modeling Metrics Registry
- ML Metrics
Provides registry functionality for Metric classes. For implementation details see
EligibleMetrics
accuracy
- Description
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html For implementation details see
Accuracy
- Attributes
TASK: classification
f1
- Description
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html For implementation details see
F1Score
- Attributes
TASK: classification
jaccard
- Description
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_score.html For implementation details see
Jaccard
- Attributes
TASK: classification
logloss
- Description
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html For implementation details see
LogLoss
- Attributes
TASK: classification
precision
- Description
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html For implementation details see
Precision
- Attributes
TASK: classification
recall
- Description
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html For implementation details see
Recall
- Attributes
TASK: classification
rocauc
- Description
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html For implementation details see
RocAUC
- Attributes
TASK: classification
roc-curve
- Description
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html For implementation details see
RocCurve
- Attributes
TASK: classification
pr-curve
- Description
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_curve.html For implementation details see
PRCurve
- Attributes
TASK: classification
mae
- Description
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html For implementation details see
MAE
- Attributes
TASK: regression
rmse
- Description
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html For implementation details see
RMSE
- Attributes
TASK: regression
msle
- Description
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_log_error.html For implementation details see
MSLE
- Attributes
TASK: regression
mape
- Description
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_percentage_error.html For implementation details see
MAPE
- Attributes
TASK: regression
r2
- Description
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html For implementation details see
R2Score
- Attributes
TASK: regression
cindex
- Description
c-index survival metric class. Calculates alternative cindex metric as per Harrel. For implementation details see
CIndex
- Attributes
TASK: survival