Modeling Metrics Registry

ML Metrics

Provides registry functionality for Metric classes. For implementation details see EligibleMetrics

accuracy

Description

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html For implementation details see Accuracy

Attributes
  • TASK: classification

f1

Description

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html For implementation details see F1Score

Attributes
  • TASK: classification

jaccard

Description

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_score.html For implementation details see Jaccard

Attributes
  • TASK: classification

logloss

Description

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html For implementation details see LogLoss

Attributes
  • TASK: classification

precision

Description

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html For implementation details see Precision

Attributes
  • TASK: classification

recall

Description

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html For implementation details see Recall

Attributes
  • TASK: classification

rocauc

Description

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html For implementation details see RocAUC

Attributes
  • TASK: classification

roc-curve

Description

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html For implementation details see RocCurve

Attributes
  • TASK: classification

pr-curve

Description

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_curve.html For implementation details see PRCurve

Attributes
  • TASK: classification

mae

Description

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html For implementation details see MAE

Attributes
  • TASK: regression

rmse

Description

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html For implementation details see RMSE

Attributes
  • TASK: regression

msle

Description

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_log_error.html For implementation details see MSLE

Attributes
  • TASK: regression

mape

Description

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_percentage_error.html For implementation details see MAPE

Attributes
  • TASK: regression

r2

Description

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html For implementation details see R2Score

Attributes
  • TASK: regression

cindex

Description

c-index survival metric class. Calculates alternative cindex metric as per Harrel. For implementation details see CIndex

Attributes
  • TASK: survival