Models Registry
- Model Types
Provides registry functionality for Model classes. For implementation details see
EligibleModels
DummyRegressorModel
- Description
Wrapper for sklearn.dummy.DummyRegressor. For implementation details see
DummyRegressorModel
- Attributes
TASK: regression
TAGS: [‘dummy’]
DummyClassifierModel
- Description
Wrapper for sklearn.dummy.DummyClassifier. For implementation details see
DummyClassifierModel
- Attributes
TASK: classification
TAGS: [‘dummy’]
DummySurvivalModel
- Description
Dummy survival model. For implementation details see
DummySurvivalModel
- Attributes
TASK: survival
TAGS: [‘dummy’]
LogisticRegressionModel
- Description
Wrapper for sklearn.linear_model.LogisticRegression. For implementation details see
LogisticRegressionModel
- Attributes
TASK: classification
TAGS: [‘linear’, ‘regularization’]
LassoModel
- Description
Wrapper for sklearn.linear_model.Lasso. For implementation details see
LassoModel
- Attributes
TASK: regression
TAGS: [‘linear’, ‘regularization’]
ElasticNetModel
- Description
Wrapper for sklearn.linear_model.ElasticNet. For implementation details see
ElasticNetModel
- Attributes
TASK: regression
TAGS: [‘linear’, ‘regularization’]
RidgeModel
- Description
Wrapper for sklearn.linear_model.Ridge. For implementation details see
RidgeModel
- Attributes
TASK: regression
TAGS: [‘linear’, ‘regularization’]
LassoLarsAICModel
- Description
Wrapper for sklearn.linear_model.LassoLarsIC with AIC criterion. For implementation details see
LassoLarsAICModel
- Attributes
TASK: regression
TAGS: [‘linear’, ‘regularization’]
LassoLarsBICModel
- Description
Wrapper for sklearn.linear_model.LassoLarsIC with BIC criterion. For implementation details see
LassoLarsBICModel
- Attributes
TASK: regression
TAGS: [‘linear’, ‘regularization’]
BernoulliNBClassifierModel
- Description
Wrapper for sklearn.naive_bayes.BernoulliNB. For implementation details see
BernoulliNBClassifierModel
- Attributes
TASK: classification
TAGS: [‘naive_bayes’]
KNeighborsRegressorModel
- Description
Wrapper for sklearn.neighbors.KNeighborsRegressor. For implementation details see
KNeighborsRegressorModel
- Attributes
TASK: regression
TAGS: [‘neighbors’]
KNeighborsClassifierModel
- Description
Wrapper for sklearn.neighbors.KNeighborsClassifier. For implementation details see
KNeighborsClassifierModel
- Attributes
TASK: classification
TAGS: [‘neighbors’]
RandomSurvivalForestModel
- Description
Wrapper for sksurv.ensemble.RandomSurvivalForest For implementation details see
RandomSurvivalForestModel
- Attributes
TASK: survival
TAGS: [‘tree’, <ModelingTask.SURV: ‘survival’>]
CoxNetModel
- Description
Wrapper for sksurv.linear_model.CoxnetSurvivalAnalysis - Elastic. For implementation details see
CoxNetModel
- Attributes
TASK: survival
TAGS: [‘linear’, <ModelingTask.SURV: ‘survival’>, ‘regularization’]
CoxLassoModel
- Description
Wrapper for sksurv.linear_model.CoxnetSurvivalAnalysis - Lasso. For implementation details see
CoxLassoModel
- Attributes
TASK: survival
TAGS: [‘linear’, <ModelingTask.SURV: ‘survival’>, ‘regularization’]
CoxRidgeModel
- Description
Wrapper for sksurv.linear_model.CoxPHSurvivalAnalysis - Ridge. For implementation details see
CoxRidgeModel
- Attributes
TASK: survival
TAGS: [‘linear’, <ModelingTask.SURV: ‘survival’>, ‘regularization’]
IPCRidgeModel
- Description
Wrapper for sksurv.linear_model.IPCRidge For implementation details see
IPCRidgeModel
- Attributes
TASK: survival
TAGS: [‘linear’, <ModelingTask.SURV: ‘survival’>, ‘regularization’]
GradientBoostingSAModel
- Description
Wrapper for sksurv.ensemble.GradientBoostingSurvivalAnalysis For implementation details see
GradientBoostingSAModel
- Attributes
TASK: survival
TAGS: [‘ensemble’, <ModelingTask.SURV: ‘survival’>, ‘tree’]
SurvivalSVMModel
- Description
Wrapper for sksurv.svm.FastSurvivalSVM Note on usage: When rank_ratio parameter is 1, only ranking is performed. When it is zero, objective is regression, so the whole semantics gets reversed. With ranking prediction is risk (the lower the better), with regression preidction is survival time (the higher the better). In this particular model rank_ratio is (ans should be) fixed to 1. For implementation details see
SurvivalSVMModel
- Attributes
TASK: survival
TAGS: [‘svm’, <ModelingTask.SURV: ‘survival’>, ‘exclude’]
SurvivalKernelSVMModel
- Description
Wrapper for sksurv.svm.FastKernelSurvivalSVM Note on usage: When rank_ratio parameter is 1, only ranking is performed. When it is zero, objective is regression, so the whole semantics gets reversed. With ranking prediction is risk (the lower the better), with regression preidction is survival time (the higher the better). In this particular model rank_ratio is (ans should be) fixed to 1. For implementation details see
SurvivalKernelSVMModel
- Attributes
TASK: survival
TAGS: [‘svm’, <ModelingTask.SURV: ‘survival’>]
SurvivalHingeLossSVMModel
- Description
Wrapper for sksurv.svm.HingeLossSurvivalSVM For implementation details see
SurvivalHingeLossSVMModel
- Attributes
TASK: survival
TAGS: [‘svm’, <ModelingTask.SURV: ‘survival’>]
SurvivalMinlipSVMModel
- Description
Wrapper for sksurv.svm.MinlipSurvivalAnalysis For implementation details see
SurvivalMinlipSVMModel
- Attributes
TASK: survival
TAGS: [‘svm’, <ModelingTask.SURV: ‘survival’>]
SurvivalNaiveSVMModel
- Description
Wrapper for sksurv.svm.NaiveSurvivalSVM For implementation details see
SurvivalNaiveSVMModel
- Attributes
TASK: survival
TAGS: [‘svm’, <ModelingTask.SURV: ‘survival’>]
LinearSVCClassifierModel
- Description
Wrapper for sklearn.svm.LinearSVC. For implementation details see
LinearSVCClassifierModel
- Attributes
TASK: classification
TAGS: [‘svm’, ‘no_predict_proba’]
SVCClassifierModel
- Description
Wrapper for sklearn.svm.SVC. For implementation details see
SVCClassifierModel
- Attributes
TASK: classification
TAGS: [‘svm’, ‘no_predict_proba’]
SVRClassifierModel
- Description
Wrapper for sklearn.svm.SVR. For implementation details see
SVRClassifierModel
- Attributes
TASK: regression
TAGS: [‘svm’, ‘no_predict_proba’]
LightGbmRegressorModel
- Description
Wrapper for LGBMRegressor. For implementation details see
LightGbmRegressorModel
- Attributes
TASK: regression
TAGS: [‘tree’]
LightGbmClassifierModel
- Description
Wrapper for LGBMClassifier. For implementation details see
LightGbmClassifierModel
- Attributes
TASK: classification
TAGS: [‘tree’]
DecisionTreeRegressorModel
- Description
Wrapper for sklearn.tree.DecisionTreeRegressor. For implementation details see
DecisionTreeRegressorModel
- Attributes
TASK: regression
TAGS: [‘tree’]
DecisionTreeClassifierModel
- Description
Wrapper for sklearn.tree.DecisionTreeClassifier. For implementation details see
DecisionTreeClassifierModel
- Attributes
TASK: classification
TAGS: [‘tree’]
ExtraTreesRegressorModel
- Description
Wrapper for sklearn.ensemble.ExtraTreesRegressor. For implementation details see
ExtraTreesRegressorModel
- Attributes
TASK: regression
TAGS: [‘tree’, ‘ensemble’]
GradientBoostingRegressorModel
- Description
Wrapper for sklearn.ensemble.GradientBoostingRegressor. For implementation details see
GradientBoostingRegressorModel
- Attributes
TASK: regression
TAGS: [‘tree’, ‘ensemble’]
RandomForestRegressorModel
- Description
Wrapper for sklearn.ensemble.RandomForestRegressor. For implementation details see
RandomForestRegressorModel
- Attributes
TASK: regression
TAGS: [‘tree’, ‘ensemble’]
ExtraTreesClassifierModel
- Description
Wrapper for sklearn.ensemble.ExtraTreesClassifier. For implementation details see
ExtraTreesClassifierModel
- Attributes
TASK: classification
TAGS: [‘tree’, ‘ensemble’]
GradientBoostingClassifierModel
- Description
Wrapper for sklearn.ensemble.GradientBoostingClassifier. For implementation details see
GradientBoostingClassifierModel
- Attributes
TASK: classification
TAGS: [‘tree’, ‘ensemble’]
RandomForestClassifierModel
- Description
Wrapper for sklearn.ensemble.RandomForestClassifier. For implementation details see
RandomForestClassifierModel
- Attributes
TASK: classification
TAGS: [‘tree’, ‘ensemble’]