Models Registry

Model Types

Provides registry functionality for Model classes. For implementation details see EligibleModels

DummyRegressorModel

Description

Wrapper for sklearn.dummy.DummyRegressor. For implementation details see DummyRegressorModel

Attributes
  • TASK: regression

  • TAGS: [‘dummy’]

DummyClassifierModel

Description

Wrapper for sklearn.dummy.DummyClassifier. For implementation details see DummyClassifierModel

Attributes
  • TASK: classification

  • TAGS: [‘dummy’]

DummySurvivalModel

Description

Dummy survival model. For implementation details see DummySurvivalModel

Attributes
  • TASK: survival

  • TAGS: [‘dummy’]

LogisticRegressionModel

Description

Wrapper for sklearn.linear_model.LogisticRegression. For implementation details see LogisticRegressionModel

Attributes
  • TASK: classification

  • TAGS: [‘linear’, ‘regularization’]

LassoModel

Description

Wrapper for sklearn.linear_model.Lasso. For implementation details see LassoModel

Attributes
  • TASK: regression

  • TAGS: [‘linear’, ‘regularization’]

ElasticNetModel

Description

Wrapper for sklearn.linear_model.ElasticNet. For implementation details see ElasticNetModel

Attributes
  • TASK: regression

  • TAGS: [‘linear’, ‘regularization’]

RidgeModel

Description

Wrapper for sklearn.linear_model.Ridge. For implementation details see RidgeModel

Attributes
  • TASK: regression

  • TAGS: [‘linear’, ‘regularization’]

LassoLarsAICModel

Description

Wrapper for sklearn.linear_model.LassoLarsIC with AIC criterion. For implementation details see LassoLarsAICModel

Attributes
  • TASK: regression

  • TAGS: [‘linear’, ‘regularization’]

LassoLarsBICModel

Description

Wrapper for sklearn.linear_model.LassoLarsIC with BIC criterion. For implementation details see LassoLarsBICModel

Attributes
  • TASK: regression

  • TAGS: [‘linear’, ‘regularization’]

BernoulliNBClassifierModel

Description

Wrapper for sklearn.naive_bayes.BernoulliNB. For implementation details see BernoulliNBClassifierModel

Attributes
  • TASK: classification

  • TAGS: [‘naive_bayes’]

KNeighborsRegressorModel

Description

Wrapper for sklearn.neighbors.KNeighborsRegressor. For implementation details see KNeighborsRegressorModel

Attributes
  • TASK: regression

  • TAGS: [‘neighbors’]

KNeighborsClassifierModel

Description

Wrapper for sklearn.neighbors.KNeighborsClassifier. For implementation details see KNeighborsClassifierModel

Attributes
  • TASK: classification

  • TAGS: [‘neighbors’]

RandomSurvivalForestModel

Description

Wrapper for sksurv.ensemble.RandomSurvivalForest For implementation details see RandomSurvivalForestModel

Attributes
  • TASK: survival

  • TAGS: [‘tree’, <ModelingTask.SURV: ‘survival’>]

CoxNetModel

Description

Wrapper for sksurv.linear_model.CoxnetSurvivalAnalysis - Elastic. For implementation details see CoxNetModel

Attributes
  • TASK: survival

  • TAGS: [‘linear’, <ModelingTask.SURV: ‘survival’>, ‘regularization’]

CoxLassoModel

Description

Wrapper for sksurv.linear_model.CoxnetSurvivalAnalysis - Lasso. For implementation details see CoxLassoModel

Attributes
  • TASK: survival

  • TAGS: [‘linear’, <ModelingTask.SURV: ‘survival’>, ‘regularization’]

CoxRidgeModel

Description

Wrapper for sksurv.linear_model.CoxPHSurvivalAnalysis - Ridge. For implementation details see CoxRidgeModel

Attributes
  • TASK: survival

  • TAGS: [‘linear’, <ModelingTask.SURV: ‘survival’>, ‘regularization’]

IPCRidgeModel

Description

Wrapper for sksurv.linear_model.IPCRidge For implementation details see IPCRidgeModel

Attributes
  • TASK: survival

  • TAGS: [‘linear’, <ModelingTask.SURV: ‘survival’>, ‘regularization’]

GradientBoostingSAModel

Description

Wrapper for sksurv.ensemble.GradientBoostingSurvivalAnalysis For implementation details see GradientBoostingSAModel

Attributes
  • TASK: survival

  • TAGS: [‘ensemble’, <ModelingTask.SURV: ‘survival’>, ‘tree’]

SurvivalSVMModel

Description

Wrapper for sksurv.svm.FastSurvivalSVM Note on usage: When rank_ratio parameter is 1, only ranking is performed. When it is zero, objective is regression, so the whole semantics gets reversed. With ranking prediction is risk (the lower the better), with regression preidction is survival time (the higher the better). In this particular model rank_ratio is (ans should be) fixed to 1. For implementation details see SurvivalSVMModel

Attributes
  • TASK: survival

  • TAGS: [‘svm’, <ModelingTask.SURV: ‘survival’>, ‘exclude’]

SurvivalKernelSVMModel

Description

Wrapper for sksurv.svm.FastKernelSurvivalSVM Note on usage: When rank_ratio parameter is 1, only ranking is performed. When it is zero, objective is regression, so the whole semantics gets reversed. With ranking prediction is risk (the lower the better), with regression preidction is survival time (the higher the better). In this particular model rank_ratio is (ans should be) fixed to 1. For implementation details see SurvivalKernelSVMModel

Attributes
  • TASK: survival

  • TAGS: [‘svm’, <ModelingTask.SURV: ‘survival’>]

SurvivalHingeLossSVMModel

Description

Wrapper for sksurv.svm.HingeLossSurvivalSVM For implementation details see SurvivalHingeLossSVMModel

Attributes
  • TASK: survival

  • TAGS: [‘svm’, <ModelingTask.SURV: ‘survival’>]

SurvivalMinlipSVMModel

Description

Wrapper for sksurv.svm.MinlipSurvivalAnalysis For implementation details see SurvivalMinlipSVMModel

Attributes
  • TASK: survival

  • TAGS: [‘svm’, <ModelingTask.SURV: ‘survival’>]

SurvivalNaiveSVMModel

Description

Wrapper for sksurv.svm.NaiveSurvivalSVM For implementation details see SurvivalNaiveSVMModel

Attributes
  • TASK: survival

  • TAGS: [‘svm’, <ModelingTask.SURV: ‘survival’>]

LinearSVCClassifierModel

Description

Wrapper for sklearn.svm.LinearSVC. For implementation details see LinearSVCClassifierModel

Attributes
  • TASK: classification

  • TAGS: [‘svm’, ‘no_predict_proba’]

SVCClassifierModel

Description

Wrapper for sklearn.svm.SVC. For implementation details see SVCClassifierModel

Attributes
  • TASK: classification

  • TAGS: [‘svm’, ‘no_predict_proba’]

SVRClassifierModel

Description

Wrapper for sklearn.svm.SVR. For implementation details see SVRClassifierModel

Attributes
  • TASK: regression

  • TAGS: [‘svm’, ‘no_predict_proba’]

LightGbmRegressorModel

Description

Wrapper for LGBMRegressor. For implementation details see LightGbmRegressorModel

Attributes
  • TASK: regression

  • TAGS: [‘tree’]

LightGbmClassifierModel

Description

Wrapper for LGBMClassifier. For implementation details see LightGbmClassifierModel

Attributes
  • TASK: classification

  • TAGS: [‘tree’]

DecisionTreeRegressorModel

Description

Wrapper for sklearn.tree.DecisionTreeRegressor. For implementation details see DecisionTreeRegressorModel

Attributes
  • TASK: regression

  • TAGS: [‘tree’]

DecisionTreeClassifierModel

Description

Wrapper for sklearn.tree.DecisionTreeClassifier. For implementation details see DecisionTreeClassifierModel

Attributes
  • TASK: classification

  • TAGS: [‘tree’]

ExtraTreesRegressorModel

Description

Wrapper for sklearn.ensemble.ExtraTreesRegressor. For implementation details see ExtraTreesRegressorModel

Attributes
  • TASK: regression

  • TAGS: [‘tree’, ‘ensemble’]

GradientBoostingRegressorModel

Description

Wrapper for sklearn.ensemble.GradientBoostingRegressor. For implementation details see GradientBoostingRegressorModel

Attributes
  • TASK: regression

  • TAGS: [‘tree’, ‘ensemble’]

RandomForestRegressorModel

Description

Wrapper for sklearn.ensemble.RandomForestRegressor. For implementation details see RandomForestRegressorModel

Attributes
  • TASK: regression

  • TAGS: [‘tree’, ‘ensemble’]

ExtraTreesClassifierModel

Description

Wrapper for sklearn.ensemble.ExtraTreesClassifier. For implementation details see ExtraTreesClassifierModel

Attributes
  • TASK: classification

  • TAGS: [‘tree’, ‘ensemble’]

GradientBoostingClassifierModel

Description

Wrapper for sklearn.ensemble.GradientBoostingClassifier. For implementation details see GradientBoostingClassifierModel

Attributes
  • TASK: classification

  • TAGS: [‘tree’, ‘ensemble’]

RandomForestClassifierModel

Description

Wrapper for sklearn.ensemble.RandomForestClassifier. For implementation details see RandomForestClassifierModel

Attributes
  • TASK: classification

  • TAGS: [‘tree’, ‘ensemble’]